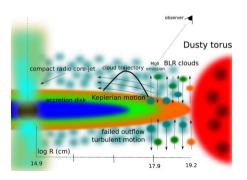
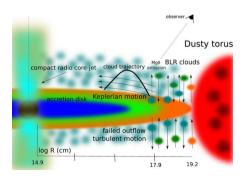


Can we detect eclipses of galactic nuclei and what are they useful for?

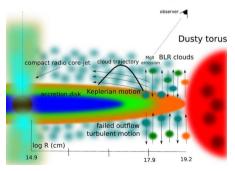

Michal Zajaček (Masaryk University)

TATRA ASTRO SUMMIT - Astronomical Institute, Slovak Academy of Sciences

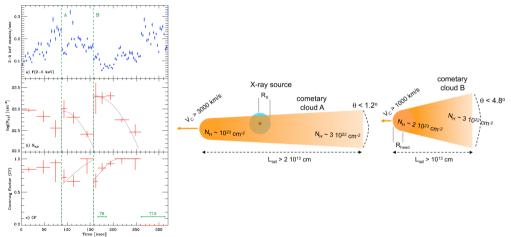
September 24, 2025


Transits in AGN: analogous to exoplanets

Are they observed?

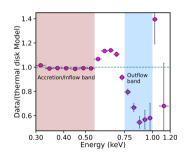

Transits in AGN: analogous to exoplanets

- Are they observed?
- Yes, so far mostly in the X-ray domain: asymmetric eclipses of the compact X-ray emission region due to passages of comet-shaped broad-line region (BLR) clouds



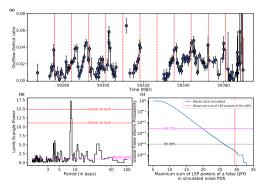
Transits in AGN: analogous to exoplanets

- Are they observed?
- Yes, so far mostly in the X-ray domain: asymmetric eclipses of the compact X-ray emission region due to passages of comet-shaped broad-line region (BLR) clouds
- Geometrically limited because the BLR clouds form a flattened structure surrounding the accretion disc at a distance of several 1000 gravitational radii from the SMBH


Broad-line region cloud transits

Maiolino et al. (2010): indication of the cometary geometry of clouds for NGC1365; transits lasting a few hours to days coincident with the BLR location

Detection of periodic absorption in ASASSN-20qc


- lacksquare absorption at energies 0.75-1 keV in the X-ray domain due to recurrent, periodic ultrafast nuclear outflow
- plausibly launched by an orbiting heavier companion: intermediate-mass black hole (IMBH)

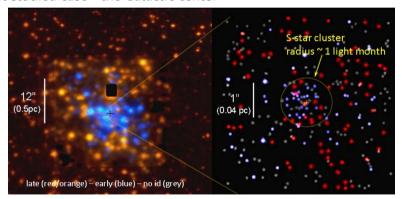
See Pasham et al., 2024

Detection of periodic absorption in ASASSN-20qc


- lacksquare absorption at energies 0.75-1 keV in the X-ray domain due to recurrent, periodic ultrafast nuclear outflow
- plausibly launched by an orbiting heavier companion: IMBH (?)

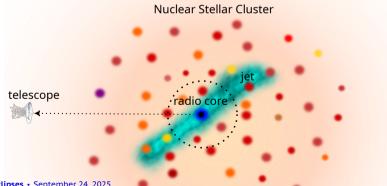
See Pasham et al., 2024

Detection of periodic absorption in ASASSN-20qc

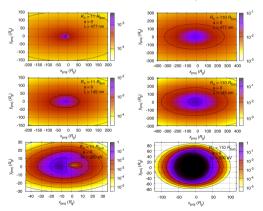

plausibly launched by an orbiting heavier companion: IMBH (?)

See Pasham et al., 2024

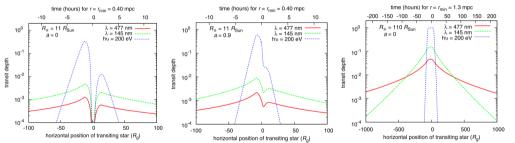
Stellar transits in AGN


- SMBH typically surrounded by dense nuclear star clusters (NSCs)
- dominated by evolved (larger) red giants and supergiants
- the best studied case the Galactic center

Milky Way Nuclear Star Cluster (Genzel et al. 2010)


Stellar transits in AGN

- SMBH typically surrounded by dense nuclear star clusters (NSCs)
- transit recurrence and duration depend on the star-SMBH distance in the sphere of influence
- eclipse depth is given by the ratio of angular sizes of the nuclear emission and the stellar body


Stellar transits in AGN: X-ray, UV, and optical domain

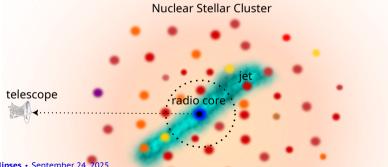
- discussed and analyzed by Béky and Kocsis (2013)
- transit durations of a few weeks and orbital periods of a few years
- possibility to constrain accretion disk orientation, SMBH mass, and spin

Stellar transits in AGN: X-ray, UV, and optical domain

based on the light-curve shapes of a stellar transit, it is possible to infer the SMBH spin as well as a stellar type (size)

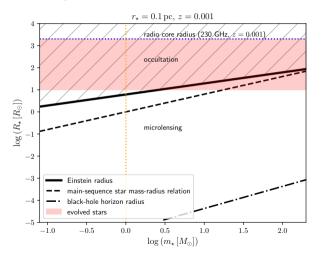
Calculations of "inverted" transit light curves for AGN Novikov-Thorne disks eclipsed by a star (Béky and Kocsis, 2013)

Transits in AGN: what about radio domain?

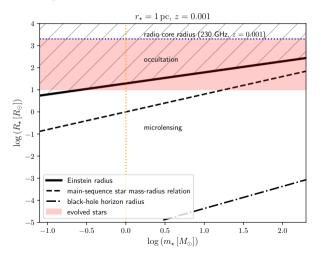

- long-term monitoring of radio-loud AGN
- \blacksquare high resolution at the level of $\sim 0.1\,\mathrm{mas}$ and better using long-baseline interferometry techniques
- $lue{}$ brightest radio components: radio cores with core sizes $heta \sim 0.1\,\mathrm{mas}$ at $uu \sim 10\,\mathrm{GHz}$
- lacksquare to eclipse the core, one would need obstacles of the size $l pprox heta D_{
 m A} \sim 0.18\,{
 m pc}$ for the source at z=0.1
- eclipse by foreground molecular clumps (stars too small)
- density requirements inferred from plasma frequency and extreme scattering conditions

$$n_{\rm e} \ge \frac{4\pi^2 \nu^2 m_{\rm e} \epsilon_0}{e^2} = 1.23 \times 10^{12} \left(\frac{\nu}{10 \,{\rm GHz}}\right)^2 \,{\rm cm}^{-3} \,.$$
 (1)

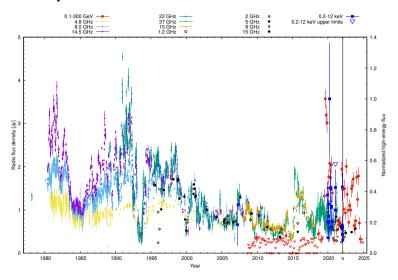
$$\theta_{\rm ESE} \approx \frac{r_{\rm e}c^2}{2\pi\nu_{\rm GHz}^2} \frac{\Delta n_{\rm e}}{L} l_{\rm obs} \approx 16 \left(\frac{\nu_{\rm GHz}}{5 \, \rm GHz}\right)^{-2} \left(\frac{\Delta n_{\rm e}}{10^3 \, \rm cm^{-3}}\right) \left(\frac{L}{1 \, \rm AU}\right)^{-1} \left(\frac{l_{\rm obs}}{49 \, \rm AU}\right) \, \rm mas \,, \tag{2}$$


Stellar transits in AGN: what about radio domain?

- stellar transits in the radio domain become plausibly detected when (i) the observing frequency is increased to 100-230 GHz (mm domain) and (ii) the radio-loud source is relatively very close ($z \lesssim 0.001$)
- core-shift effect $\theta \propto \nu^{-1}$
- lacksquare for z=0.001 and $u=230\,\mathrm{GHz}$, we obtain $l\sim4000\,R_\odot$
- large red supergiants can (partially) eclipse the radio core in the mm domain


Stellar transits in AGN: what about radio domain?

lacksquare star orbiting at $r_{\star} \sim 0.1\,\mathrm{pc}$



Stellar transits in AGN: what about radio domain?

star orbiting at $r_\star \sim 1\,\mathrm{pc}$



Detections of dips in PKS 1413+135

Detections of dips in PKS 1413+135

- lacktriangle duration $au_{
 m dip}pprox 1$ year and the recurrence timescale of $au_{
 m rec}\sim 5-10$ years
- redshift $z \sim 0.5$

core with the angular size $\theta \sim 1$ mas: obstacle on the scale of $\sim 6 \, \mathrm{pc}$, not really a star but rather a denser cloud, circumnuclear clumpy ring(?); Britzen et al. (in prep)

Summary and Future prospects

- detecting stars in radio-loud galactic nuclei only possible in the mm domain for nearby sources ($z \lesssim 0.001$), such as Centaurus A
- stars with large cross-sections required ($R \gtrsim 1000\,R_\odot$): red supergiants, inflated star (collision with the accretion disk and jet), stellar merger products
- To do: calculate mock light curves of eclipses
- To do: calculate likelihood and required cadences for monitoring

IAU Symposium 405 in Brno in 2026

- website: https://gc2026.muni.cz
- dates: May 18-22, 2026
- Venue: Brno Observatory and Planetarium

This symposium will bring together experts working on both observational and theoretical studies of the Galactic Center so that they can "traverse" this exciting region from Sgr A" and the symmetric disease project start of the center in whether day one and hark, creation.

MASARYK UNIVERSITY