COMPACT STELLAR CLUSTERS HOSTING
AN INTERMEDIATE MASS BLACK HOLE

magnetohydrodynamic study of inflow—outflow dynamics
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why intermediate-mass black holes matter

B MBHs fill the gap between stellar-mass black
holes (a few M) and supermassive black holes

(10° — 10" M), with typical masses of 10* — 10° M

B Globular clusters show dynamical hints (e.g.,
velocity dispersions), but could be explained by
concentrated stellar remnants

B Nuclear star clusters near galactic centers are
also promising - many massive stars that could
feed an IMBH via winds
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Greene et al. 2020; Madau & Rees 2001 | IMBHs are the “missing link” in BH demographics




IRS 13E: a prototype IMBH host
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Mock SED calculations for 2 possible IMBHs (30 000 solar masses,
different Eddington ratios) could fit multi-band observations
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simulation overview & setup

B ATHENA++ solves 3D MHD equations with source terms
for stellar winds of 6 WR stars, each injecting mass,
momentum, energy, and toroidal magnetic field

B Cartesian box (0.06 pc)3 with 2563 resolution and five
levels of SMR (finest resolution around 10% r)

B “Stars” move on fixed circular Keplerian orbits around
3 x 10* M, IMBH approximated as a point source potential

B Parameter variation: moderate vs. high metallicity;
isotropic vs. disk-like (i+15°) configuration; magnetic vs.
pure hydrodynamic
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turbulent outflows dominate
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Radial profiles of density, mass loss rate, radial velocity, and temperature
for 5 simulations comparing effects of cluster geometry, wind chemical
composition, and magnetic field
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cooling-induced clumps

B [n high-metallicity runs (Z = 0.4 modeled after WC8-9),
post-shock gas rapidly cools to Ts10° K, forming dense

clumps via thin-shell instability

B Cooling does not produce sustained cold inflow; overall
accretion remains suppressed

B Few clumps penetrate inside rg; most are shredded or
ejected outward

Spatial density rendering 1065 years into the simulation.
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observational predictions: X-ray signatures

m diffuse wind shocks dominate (L, ~ 10°* — 10°° erg/s)

B Signs of variability caused by close stellar passages; IMBH x-ray strongest periodicity ~ 100 yr,
total cluster at ~ 200 yr
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X-ray surface brightness maps
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Diffuse cluster emission would mask faint IMBH signatures in X-ray data




observational implications & future missions
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B Need for future missions: Lynx and AXIS in X-ray band

B IMBHs accreting in RIAF mode could exhibit faint
synchrotron in radio - SKA

B Assuming the IMBH’s SED and its FIR peak, if the
variability is similar to that of Sgr A* - possibly
detectable by JWST/MIRI
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conclusions

B Turbulent Outflows: colliding WR winds generate highly turbulent outflows, expelling nearly all of the
injected mass

B Suppressed Accretion: net M, = 2 x 107! M_ yr~! (« wind injection), with angular momentum cancellation
preventing disk formation

B Cooling Effects: high metallicity leads to transient dense clumps that do not significantly alter the
suppressed inflow

B Unobservable IMBH Signature: Cluster wind-shock emission (L, ~ 10°* — 10°° erg/s) overwhelms IMBH
ADAF (L, ~ 10°? erg/s)

B Future Outlook: Next-generation X-ray telescopes (Lynx, AXIS) combined with multiwavelength campaigns
(JWST, SKA) are essential to detect and characterize IMBHs in dense stellar systems
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