

# Morphological classification of eclipsing binary stars using computer vision methods

M. Gabdeev\*, Š. Parimucha, Y. Markus, M. Vaňko, P. Gajdoš

Tatranská Lomnica, 24 September 2025

\* was supported by EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under project №09103-03-V04-00262







### Content

- Eclipsing binaries
- 2. The task
- 3. The dataset
- 4. The transformation
- 5. The method
- 6. The training
- 7. The results
- 8. Conclusions and future plans



## The task!

#### Why automation?

| Survey                    | Number of Eclipsing Binary Candidates | Notes                                                                         |  |  |
|---------------------------|---------------------------------------|-------------------------------------------------------------------------------|--|--|
| Gaia                      | ~2,184,47                             | Gaia Data Release 3 (GDR3)                                                    |  |  |
| OGLE                      | ~525,000                              | OGLE-IV ~450,600 towards the Galactic Bulge; ~75,400 in the Magellanic Clouds |  |  |
| Zwicky Transient Facility | ~350,000                              | ZTF Data Release 2 (DR2)                                                      |  |  |
| ASAS-SN                   | ~136,600                              | Combination of known and new EA,<br>EB, and EW types                          |  |  |
| TESS                      | ~4,600 - ~6,700                       | TESS primary mission (Sectors 1-26) / Citizen Science                         |  |  |

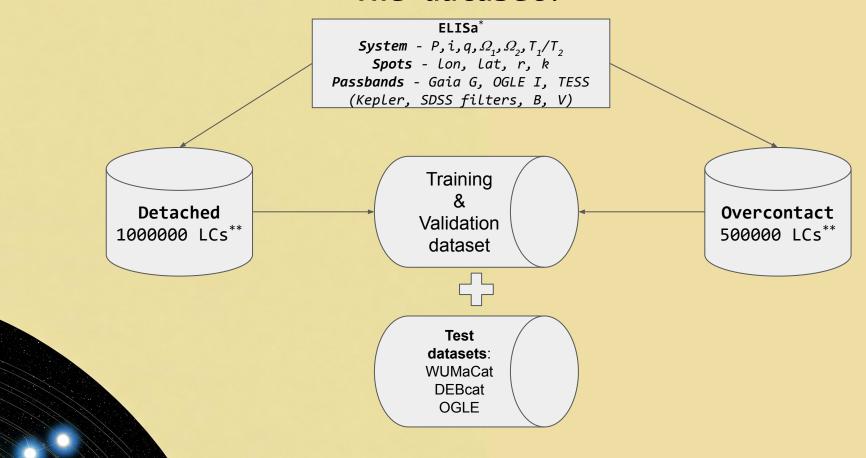
The Vera C. Rubin observatory with Legacy Survey of Space and Time (LSST) expects ~24 millions of new candidates (Prša, 2011)

## The task!

The perspective of systems' parameters determination

We are looking from point of view of creating physical models using ELISa and here two potentials  $\Omega_{_1}$  and  $\Omega_{_2}$  play the main role in dividing to classes.

| Detached = Semi-detached | Overcontact                    |
|--------------------------|--------------------------------|
| $\Omega_1 \# \Omega_2$   | $\Omega_1 = \Omega_2 = \Omega$ |



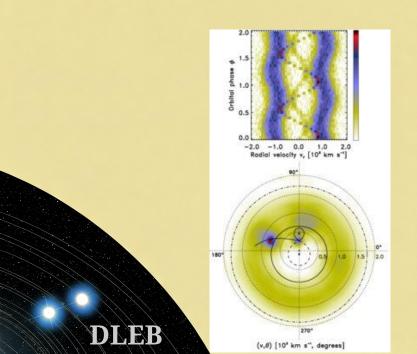

Two classes!





## The dataset!




<sup>\*</sup>https://github.com/mikecokina/elisa

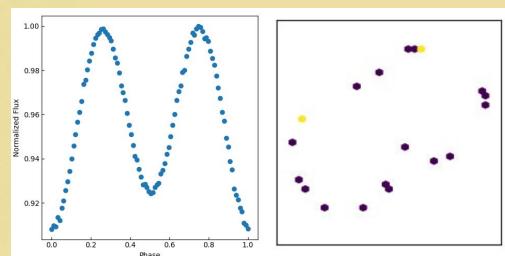
<sup>\*\*</sup>https://github.com/astroupis/EBML

## The transformation!

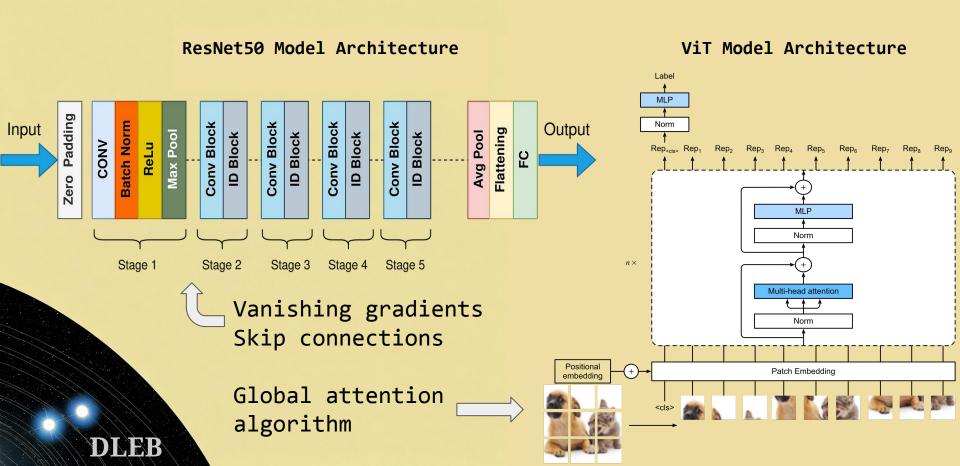
Inspired by Doppler tomography, we used transformation of LCs into polar coordinates plus hexbin representation. The final transformation formula looks like:

Equally distributed normalised fluxes  $[nf_1, nf_2, nf_3, \dots nf_{100}]$ 



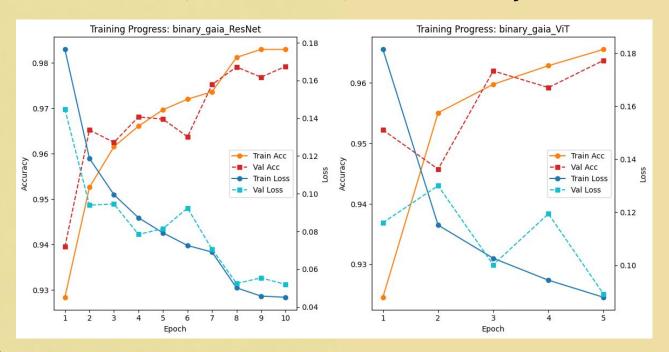

$$x = r \times cos(\alpha)$$

$$y = r \times sin(\alpha)$$


$$\alpha = \phi \times 360 - 90$$

$$r = r_{max} - (r_{max} - r_{min}) * (F_{max} - F) / (F_{max} - F_{min})$$

$$r_{max} = 1, r_{min} = 0.2$$




## The method!



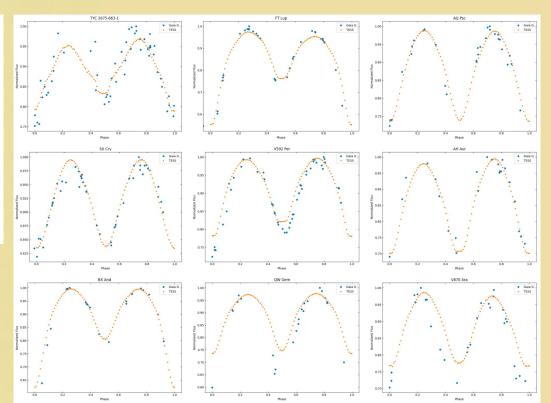
## The training!

- In total we trained 18 models\*
- GPU RTX 4070 12GB, RAM 64GB, CPU AMD Ryzen 9



Predicted accuracy of models for different passbands tested on the validation datasets.

|                                | Gaia $G$ | I    | TESS |
|--------------------------------|----------|------|------|
| ${f ResNet 50}$                |          |      |      |
| binary                         | 0.98     | 0.98 | 0.98 |
| detached_spot                  | 0.94     | 0.92 | 0.93 |
| overcontact_spot               | 0.88     | 0.77 | 0.87 |
| ${ m vit\_base\_patch 16\_22}$ | 4        |      |      |
| binary                         | 0.96     | 0.98 | 0.98 |
| detached_spot                  | 0.92     | 0.89 | 0.91 |
| overcontact_spot               | 0.83     | 0.75 | 0.84 |


## Optimistic

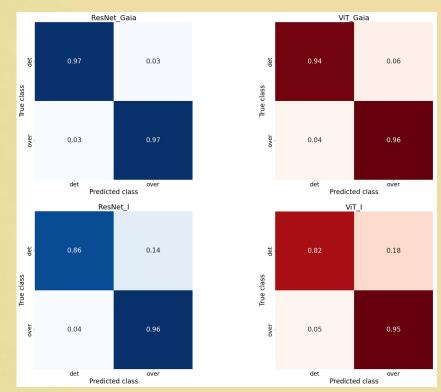
WUMaCat(90) & DEBcat(52) for TESS passband - 100% accuracy for both ResNET50 and ViT

for *Gaia* passband - 100% for detached, 3 and 8 errors for overcontact systems

**Table 3**Binary classification metrics for the test datasets. Upper section — the results for DEBCat detached objects as Negatives, WUMaCat overcontact objects as Positives. Lower section — 200 random OGLE-IV objects with the same encoding.

| Model              | Accuracy | Precision | Recall | F1   | TN  | FP | FN | TP |  |
|--------------------|----------|-----------|--------|------|-----|----|----|----|--|
| DEBcat and WUMaCat |          |           |        |      |     |    |    |    |  |
| tess_res           | 1.00     | 1.0       | 1.00   | 1.00 | 52  | 0  | 0  | 90 |  |
| tess_vit           | 1.00     | 1.0       | 1.00   | 1.00 | 52  | 0  | 0  | 90 |  |
| gaia_res           | 0.98     | 1.0       | 0.97   | 0.98 | 52  | 0  | 3  | 87 |  |
| gaia_vit           | 0.94     | 1.0 0.91  |        | 0.95 | 52  | 0  | 8  | 82 |  |
|                    | OGLE-IV  |           |        |      |     |    |    |    |  |
| i_res              | 0.90     | 0.81      | 0.96   | 0.88 | 107 | 17 | 3  | 73 |  |
| i_vit              | 0.87     | 0.77      | 0.95   | 0.85 | 102 | 22 | 4  | 72 |  |
| gaia_res           | 0.97     | 0.95      | 0.97   | 0.96 | 120 | 4  | 2  | 74 |  |
| gaia_vit           | 0.94     | 0.90      | 0.96   | 0.93 | 116 | 8  | 3  | 73 |  |




DLEB

#### Semi-optimistic

200 random OGLE objects, 124 detached and 76 overcontact systems, LCs in I and Gaia G passbands, OGLE classification as a ground truth.

**Table 3**Binary classification metrics for the test datasets. Upper section — the results for DEBCat detached objects as Negatives, WUMaCat overcontact objects as Positives. Lower section — 200 random OGLE-IV objects with the same encoding.

| Model              | Accuracy | Precision | Recall | F1   | TN  | FP | FN | TP |  |
|--------------------|----------|-----------|--------|------|-----|----|----|----|--|
| DEBcat and WUMaCat |          |           |        |      |     |    |    |    |  |
| tess_res           | 1.00     | 1.0       | 1.00   | 1.00 | 52  | 0  | 0  | 90 |  |
| tess_vit           | 1.00     | 1.0       | 1.00   | 1.00 | 52  | 0  | 0  | 90 |  |
| gaia_res           | 0.98     | 1.0       | 0.97   | 0.98 | 52  | 0  | 3  | 87 |  |
| gaia_vit           | 0.94     | 1.0       | 0.91   | 0.95 | 52  | 0  | 8  | 82 |  |
|                    | OGLE-IV  |           |        |      |     |    |    |    |  |
| i_res              | 0.90     | 0.81      | 0.96   | 0.88 | 107 | 17 | 3  | 73 |  |
| i_vit              | 0.87     | 0.77      | 0.95   | 0.85 | 102 | 22 | 4  | 72 |  |
| gaia_res           | 0.97     | 0.95      | 0.97   | 0.96 | 120 | 4  | 2  | 74 |  |
| gaia_vit           | 0.94     | 0.90      | 0.96   | 0.93 | 116 | 8  | 3  | 73 |  |



## Negative

WUMaCat has information about spots, DEBcat has not. We used two approaches: visual examination of TESS LCs and literature search (only 19 objects)

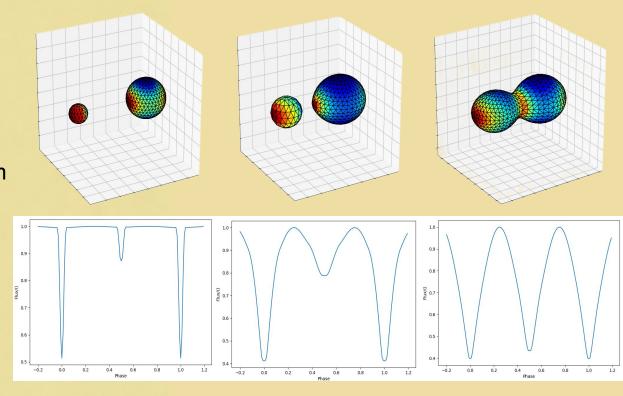
**Table 4**Spot detection classification metrics for objects from DEBcat and WUMaCat. Upper section — the results for overcontact objects with no spots as Negatives, with spots as Positives. Lower section — for detached objects with the same encoding.

| Model       | Acc  | Prec | Recall | F1   | TN | FP | FN | TP | AUC  |
|-------------|------|------|--------|------|----|----|----|----|------|
| Overcontact |      |      |        |      |    |    |    |    |      |
| gaia_resnet | 0.60 | 0.63 | 0.52   | 0.57 | 30 | 14 | 22 | 24 | 0.64 |
| tess_resnet | 0.50 | 0.51 | 0.83   | 0.63 | 7  | 37 | 8  | 38 | 0.59 |
| gaia_vit    | 0.53 | 0.52 | 1.00   | 0.69 | 2  | 42 | 0  | 46 | 0.60 |
| tess_vit    | 0.49 | 0.50 | 0.76   | 0.60 | 9  | 35 | 11 | 35 | 0.6  |
| Detached    |      |      |        |      |    |    |    |    |      |
| gaia_resnet | 0.63 | 0.42 | 0.29   | 0.34 | 28 | 7  | 12 | 5  | 0.53 |
| tess_resnet | 0.62 | 0.43 | 0.59   | 0.50 | 22 | 13 | 7  | 10 | 0.54 |
| gaia_vit    | 0.67 | 0.00 | 0.00   | 0.00 | 35 | 0  | 17 | 0  | 0.51 |
| tess_vit    | 0.63 | 0.00 | 0.00   | 0.00 | 33 | 2  | 17 | 0  | 0.36 |

Positive - with spots, Negative - without spots

## Conclusions and future plans

- 1. We created a dataset to use in future works which is publicly available
- 2. We developed the transformation that showed excellent results in TESS and G passbands, and appropriate results in OGLE I for morphological classification
- 3. ResNet50 is faster and more precise than ViT for this task
- 4. OGLE inner classification is robust and show no discrepancy with results of our classification
- 5. OGLE *I* classification and spots detecting should be improved
- 6. The results of the work are published in Astronomy and Computing, Volume 53, id.100998
  - Classify all EB candidates from Gaia DR3 using our ResNET50 models (done)
  - Work on outlier removal to improve OGLE *I* smoothing (done)
- Start creating models to predict physical parameters from a light curve using deep learning methods. (done)


Thank you for attention!



## Eclipsing binaries

#### Classification of EB

- ♦ Based on LCs shape Algol, β Lyr, W UMa
- ♦ By Kopal, 1959 based on Roche lobe: Detached, semi-detached, contact or overcontact



Examples of detached, semi-detached and overcontact EBs models (top, row from left) and corresponding LCs (bottom, row from left).